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Abstract

Paraquat (PQ) is a neurotoxic herbicide that induces superoxide formation. Although it is known that its toxic properties are
linked to ROS production, the cellular response to PQ is still poorly understood. We reported previously that treatment with
PQ induced genome-wide changes in pre-mRNA splicing. Here, we investigated the molecular mechanism underlying PQ-
induced pre-mRNA splicing alterations. We show that PQ treatment leads to the phosphorylation and nuclear accumulation
of SRPK2, a member of the family of serine/arginine (SR) protein-specific kinases. Concomitantly, we observed increased
phosphorylation of SR proteins. Site-specific mutagenesis identified a single serine residue that is necessary and sufficient
for nuclear localization of SRPK2. Transfection of a phosphomimetic mutant modified splice site selection of the E1A
minigene splicing reporter similar to PQ-treatment. Finally, we found that PQ induces DNA damage and vice versa that
genotoxic treatments are also able to promote SRPK2 phosphorylation and nuclear localization. Consistent with these
observations, treatment with PQ, cisplatin or c-radiation promote changes in the splicing pattern of genes involved in DNA
repair, cell cycle control, and apoptosis. Altogether, our findings reveal a novel regulatory mechanism that connects PQ to
the DNA damage response and to the modulation of alternative splicing via SRPK2 phosphorylation.
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Introduction

Parkinson’s Disease (PD) is the second most common progres-

sive neurodegenerative disorder of the central nervous system.

Epidemiological studies suggest that PD is a multifactorial disorder

probably arising from polygenic inheritance and gene–environ-

mental interactions. Exposure to pesticides and to the herbicide

paraquat (PQ, 1,19-dimethyl-4,49-bipyridinium) is known to

increase the risk of developing PD. PQ uncouples the mitochon-

drial electron transport chain, which induces superoxide formation

[1]. Thus its toxic properties support the hypothesis that neuronal

damage in PD may arise from a mechanism of oxidative stress.

Since in recent years PQ has become an increasingly popular

model for studying the etiology of PD (15, 16), it is important to

understand the molecular mechanism underlying PQ-induced

toxicity to neural cells.

Recently, we reported that treatment of the human neuroblas-

toma cells SH-SY5Y with PQ induces extensive changes in

alternative pre-mRNA splicing (AS) [2]. Pre-mRNA splicing is a

crucial step of eukaryotic gene expression that has emerged in

recent years as a major regulatory mechanism of cell cycle and

apoptosis [3,4]. Changes in AS have been observed in PD and in

other neurodegenerative disorders [5]. Indeed, in response to

cellular stress AS can be controlled by specific signal transduction

pathways that lead to post-translational modifications of splicing

factors and to changes in their activity and/or subcellular

localization [6].

SR protein kinases (SRPKs) are a family of protein kinases that

phosphorylate serine-arginine-rich proteins (SR proteins), which

are important regulators of alternative splicing [7]. While SRPK1

is predominantly expressed in pancreas, SRPK2 is highly

expressed in brain, and both are co-expressed in other human

tissues and in many experimentally used cell lines [8]. SRPK1 and

2 are predominately localized in the cytoplasm, where they

phosphorylate SR proteins that can thus be re-imported into the

nucleus [9]. SRPK1 and 2 are highly similar proteins that contain

a bipartite kinase domain separated by a unique spacer region. It

has been shown that removal of the spacer in SRPK1 has little

effect on the kinase activity, but triggers the translocation of the

protein to the nucleus and consequently induces aggregation of

hyperphosphorylated SR proteins in nuclear speckles [10].

Nuclear translocation of SRPK1 was recently reported to occur

also upon Akt activation by EGF treatment [11].

Here we show that PQ treatment of SH-SY5Y human

neuroblastoma cells leads to the re-localization of SRPK2 to the

cell nucleus, to SR protein phosphorylation and to their
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accumulation in nuclear speckles. We find that phosphorylation of

a specific serine residue is necessary and sufficient to localize

SRPK2 to the nucleus and to modify the alternative splicing

pattern of a minigene splicing reporter. In addition, we show that

PQ treatment induces formation of H2AX foci that are indicative

of DNA double-strand breaks. Consistent with this, we observe

that also cisplatin and gamma irradiation induce nuclear

accumulation of SRPK2. Collectively, these data indicate that

PQ-induced AS changes are mediated by modificaton and

relocalization of SRPK2 that phosphorylate splicing factors.

Results

Treatment with PQ induces modifications in the
intracellular distribution and in the phosphorylation
status of splicing factors

In a recent report we described the result of a splicing-sensitive

microarray analysis of human neuroblastoma SH-SY5Y cells

treated with paraquat (PQ) [2]. This analysis, despite detecting

extensive changes in alternative splicing, did not show differential

expression of any gene encoding splicing regulatory factors. This

finding prompted us to test whether PQ induced posttranslational

modifications and/or changes in the intracellular distribution of

specific splicing regulators. We examined by immunofluorescence

microscopy the intracellular distribution of several splicing

regulatory proteins in cells incubated with 0.75 mM PQ for

18 hours. Using a monoclonal antibody that specifically recognizes

phosphorylated SC35, we detected enlarged nuclear speckles

(Figure 1A, upper row, and Figure S1). Relocalization of SR

proteins to nuclear speckles in PQ-treated cells was further

confirmed by the analysis of the distribution of GFP-ASF/SF2 in

treated cells (Figure 1A, middle row). In contrast, PQ did not affect

the intracellular distribution of members of the hnRNP family of

splicing regulators (such as hnRNP A1, Figure 1A, bottom row,

and hnRNP H and hnRNPK, data not shown), which has been

reported to relocate to the cytoplasm following diverse types of

stress treatments [12,13]. We also checked expression of different

hnRNP proteins by western blotting without detecting any

significant variation (Figure S2).

Formation of enlarged nuclear speckles has been previously

linked to hyperphosphorylation of SR proteins [14,15]. We thus

tested the phosphorylation status of SR proteins by western

blotting using mAb104, a monoclonal antibody that specifically

recognizes the common phosphoepitopes of classical SR proteins

[16]. In response to PQ treatment, we observed an increase in the

signal for all the classical SR proteins recognized by the antibody

(Figure 1B). To check for possible alterations of protein levels upon

PQ treatment, SR proteins were also visualized with the 16H3

antibody, which recognizes RS domains of different SR proteins

regardless of their phosphorylation status, and with anti–ASF/SF2

and anti-SRp20 antibodies (Figure 1C). Since the protein levels of

the SR proteins remained unchanged, our results collectively

demonstrate that PQ treatment increases the phosphorylation of

SR proteins.

To date, several kinases have been reported to phosphorylate

SR proteins. These include DNA topoisomerase I [17], SRPK1–3

[8,18–20] and the family of CLK1/Sty kinases [21]. Upon PQ

treatment we did not detect any appreciable change in either the

expression or the intracellular distribution of CLK1/Sty (data not

shown). In contrast, PQ induced the accumulation of SRPK2 in

the cell nucleus (Figure 2A). Quantification of fluorescence images

from individual cells revealed that the nuclear to cytoplasmic (N/

C) ratio of the SRPK2 signal was ,0.4 in untreated cells and ,2.3

in cells treated with PQ (Figure 2B). To test if the observed

increase in SR protein phosphorylation was due to SRPK activity,

we knocked down both SRPK1 and SRPK2 using specific

shRNAs (Figure 2C). Silencing was more efficient for SRPK2

than for SRPK1. We then used the phospho-specific antibody

mAb104 to test the effect of PQ on the phosphorylation of SR

proteins in SRPK depleted cells. As shown in Figure 2D, PQ

treatment no longer resulted in increased phosphorylation of

SRp55, SRp40, SRp30 and SRP20 in cells depleted of the two

kinases. Interestingly, PQ was still able to promote phosphoryla-

tion of SRp75, suggesting that SRPKs are not redundant and have

some substrate specificity. To control for equal loading of the

samples, SR proteins were also visualized with the 16H3 antibody,

which recognizes SR proteins regardless of their phosphorylation

status (Figure 2E).

SRPK2 phosphorylation at the Ser-581 residue is required
for its translocation to the nucleus after paraquat
treatment

SRPK2 normally appears on SDS-PAGE as two closely

migrating bands. In extracts prepared from PQ-treated cells we

observed an increased intensity of the slower migrating SRPK2

species at the expense of the faster migrating species (Figure 3A).

To determine whether the mobility shift of SRPK2 was due to

increased phosphorylation, the extracts were treated with calf

intestinal phosphatase (CIP). After incubation with the phospha-

tase, the slower migrating SRPK2 band in both the untreated and

the PQ-treated cells collapsed to a single faster-migrating form,

confirming that the mobility shift was due to increased phosphor-

ylation (Figure 3B).

To identify the protein domain required for the nuclear

localization of SRPK2, we created a set of deletion and point

mutations in SRPK2. In particular to determine whether there

was a link between translocation to the nucleus and phosphory-

lation of SRPK2, we generated point mutations in serine and

tyrosine residues that were predicted phosphorylation targets

according to the software Scansite [22]. The scheme of all the

designed mutants is presented in Figure S3A. All the mutant

proteins were examined for their intracellular localization both in

untreated and in PQ-treated cells (Figure S3B). Interestingly and

in contrast to SRPK1 [23], deletion of the spacer domain did not

affect SRPK2 subcellular localization both in SH-SY5Y and in

HeLa cells (Figure S3B and data not shown, respectively). As

shown in Figure 3C, one mutant, SRPK2(S581A) was unable to

relocalize to the nucleus upon PQ treatment. Quantification of the

nucleus to cytoplasm (N/C) ratio for SRPK2(S581A) in PQ-

treated cells indicated an approximately 3-fold reduced N/C ratio

compared to wild type SRPK2 (Figure 3D). In contrast, the

respective phosphomimetic mutation, S581D, was nuclear even in

the absence of PQ. Serine 581 is located in the highly conserved

C-terminal kinase domain within a putative casein kinase 2

consensus sequence (S/T-X-X-E/D, Figure 3E). Taken together,

these results indicate that phopshorylation of serine 581 is required

for nuclear accumulation of SRPK2.

Nuclear SRPK2 modifies splice site selection
Since PQ treatment leads to the translocation of SRPK2 from

the cytoplasm to the nucleus, and to hyperphosphorylation and

accumulation of SR proteins in nuclear speckles, we reasoned that

these events may affect splice site selection by modifying the

balance between SR proteins and other splicing regulatory

proteins, e.g. hnRNP proteins. To test this hypothesis we used

the Adenovirus 2 E1A minigene whose pre-mRNA can be

processed into five well-characterized mRNAs (Figure 4A). Three

Paraquat-Induced SRPK2 Relocalization
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major forms, 13 S, 12 S and 9 S derive from the selection of

alternative 59 splice sites [24]. Two minor forms, 11 S and 10 S,

involve the minor usage of a cryptic upstream 39 splice site

localized in an intron [25]. The splice site selection on this pre-

mRNA depends on the relative concentrations of hnRNP A1 and

SR proteins [12]. As illustrated in Figure 4B (lane 1), transfection

of the E1A minigene in SH-SY5Y cells generated variable

amounts of the five reported RNA species, reflecting the

differential usage of the alternative 59 and 39 splice sites. PQ

treatment resulted in a shift in splicing favoring use of the most

distal 59 splice site that gives raise to the 9 S RNA isoform

(Figure 4B, lane 2, and 4C).

Next we asked whether the modification of the alternative

splicing pattern of the E1A minigene observed in PQ-treated cells

was a consequence of the increased level of SRPK2 in the nucleus.

To this end, cells were co-transfected with the E1A minigene and

with constructs expressing HA-tagged wild type HA–SRPK2 or

the mutant HA–SRPK2(S581D) (Figure 4D). The splicing pattern

Figure 1. Increased phosphorylation of SR proteins in PQ-treated cells. A. PQ induced relocalization of SR proteins in the nucleus of treated
cells. SH-SY5Y cells treated with vehicle or with 0.75 mM PQ for 18 h were immunostained with an anti-SC35 antibody (upper row), transiently
transfected with GFP-ASF/SF2 (middle row), or with GFP-hnRNPA1 (lower row). Nuclei were stained with DAPI. B. Increased phosphorylation of SR
proteins in PQ-treated cells. Total extract of control or PQ-treated cells was probed with mAb104 to determine the phosphorylation state of classical
SR proteins. C. The same extracts used for the Western blot shown in panel B were probed with the 16H3 monoclonal antibody that detects SR
proteins regardless of their phosphorylation status, with anti ASF/SF2 and anti-SRp20 monoclonal antibodies. Actin was used as loading control.
doi:10.1371/journal.pone.0061980.g001

Paraquat-Induced SRPK2 Relocalization
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of E1A was then compared between untreated cells and cells

treated with PQ. As shown in Figure 4E and 4F, expression of the

phospho-mimetic mutant SRPK2(S581D) in untreated cells

increased production of the 9 S splice variant. Interestingly, when

expressing the nucleus-enriched SRPK2(S581D) mutant, treat-

ment with PQ did not further increase the production of the 9 S

isoform indicating that the nuclear localization of SRPK2 is

Figure 2. Nuclear translocation of SRPK2 and phosphorylation of SR proteins in response to PQ. A. Representative confocal micrographs
of SH-SY5Y cells stained with an SRPK2-specific antibody. Upper row: cells treated with vehicle; lower row: cells treated with 0.75 mM PQ for 18 h.
DAPI was used to identify the nuclei. B. The average nuclear to cytoplasmic ratio (N/C) ratio of SRPK2 fluorescent signal was determined for 50 cells as
described in Materials and Methods. *** indicates p,0.001 treated vs. control group by unpaired t-test. C. RNA-mediated silencing strongly reduced
SRPK1 and SRPK2 expression. Western blot analysis of the expression level of SRPK proteins in the same extract used for the Western blot shown in
figure 2D and 2E. CPSF73K was used as loading control. D. Silencing of SRPK1 and SRPK2 abolishes PQ-mediated phosphorylation of SR proteins.
Western blot analysis of nuclear extracts prepared from control SH-SY5Y cells treated with vehicle or with PQ, and from cells depleted of both SRPK1
and SRPK2. Phosphorylated SR proteins were detected with mab104. E. To control for equal loading of the samples SR proteins were also detected
with mab16H3.
doi:10.1371/journal.pone.0061980.g002

Paraquat-Induced SRPK2 Relocalization
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Figure 3. Phosphorylation of Ser581 is required for the nuclear localization of SRPK2. A. Western blots of total cell extract prepared from
untreated SH-SY5Y cells or from cells treated with PQ for the indicated times. The blot was probed with an anti-SRPK2 antibody. Upon PQ treatment
an increase of the slower migrating band (indicated by an arrowhead) could be observed. B. SRPK2 phosphorylation was confirmed by CIP treatment.
Total cell lysates prepared from untreated cells and from cells treated with PQ were incubated with calf intestinal phosphatase (CIP) as described in

Paraquat-Induced SRPK2 Relocalization
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sufficient to induce changes in the splicing pattern of the E1A

transcript.

DNA damage induces nuclear translocation of SRPK2 and
changes in splice-site selection

PQ is an uncoupler of the mitochondrial electron transport

chain that induces superoxide formation [1] and oxidative stress

[26]. Consequences of oxidative stress are DNA lesions, including

oxidized DNA bases, abasic sites, and single-strand and double-

strand breaks (SSBs and DSBs). Therefore, we wondered whether

the translocation of SRPK2 to the nucleus might be a consequence

of the cellular response to DNA damage. Indeed, the activation of

the DNA damage response (DDR) is suggested by the observation

that several genes related to this pathway are differentially

expressed in PQ-treated cells (Table 1). To monitor PQ-induced

DNA damage, we checked the phosphorylation status of the Ser-

139 residue of the histone variant H2AX, forming ãH2AX (for

review see [27]) in cells treated with PQ for different lengths of

times (Figure 5A). The time of appearance of ãH2AX foci in PQ-

treated cells paralleled the relocalization of SRPK2 from the

cytoplasm to the nucleus, suggesting that the two events may be

connected. To further strengthen the link between intracellular

distribution of SRPK2 and the response to DNA damage, we

tested the effect of chemical inhibitors of some of the signaling

kinases involved in this pathway. Recent studies in yeast and

metazoa have revealed that cyclin-dependent kinases (CDKs) play

an active role in the response to DNA damage [28,29]. We thus

treated SH-SY5Y cells with the general CDK inhibitor roscov-

itine. Consistent with earlier reports [30,31], incubation with

roscovitine strongly reduced the appearance of cH2AX foci after

PQ treatment (Figure 5B). Interestingly, in the presence of

roscovitine, PQ treatment no longer promoted the accumulation

of SRPK2 in the nucleus (Figure 5C). A similar effect was obtained

in the presence of caffeine, a potent inhibitor of ATM and ATR,

crucial signaling kinases that mediate the response to DNA

damage (Figure 5C). Next, we verified whether other genotoxic

treatments also promoted nuclear translocation of SRPK2. As

shown in Figure 5D, treatment with 20 mM cisplatin for 18 hours

or irradiation with 10 Gy induced both accumulation of endog-

enous SRPK2 in the nucleus and its hyperphosphorylation

(Figure 5E). Similar results were obtained in HEK 293 cells (data

not shown). Taken together these results show that activation of

the DDR results in an increase of the nuclear pool of SRPK2.

The DDR includes gene expression programs that control cell

cycle, DNA repair and apoptosis. Alternative splicing is known to

regulate many key genes in these pathways [3,32]. Consistent with

this notion, several putative alternative splicing events that were

identified in our splicing-sensitive microarray analysis of PQ-

treated cells occurred in genes involved in DNA repair, cell cycle,

and cell death [16]. To experimentally validate a subset of these

splicing events affecting internal exons, we peformend RT-PCR

analysis. As illustrated in Figure 6A, PQ treatment induced

changes in the AS pattern of genes involved in apoptosis (APAF1,

BIN1), cell cycle control (H-RAS; SKP2), and DNA repair

(ERRC1). Interestingly, in the case of APAF1 and HRAS the ASE

responded not only to PQ but also to c-radiation or cisplatin

(Figure 6B and 6C, respectively). Moreover similarly to PQ,

cisplatin treatment of SH-SY5Y transiently transfected with the

E1A splicing reporter construct stimulated the use of the most

distal 59 splice site, which gives rise to the 9 S isoform. In

conclusion, these experiments strongly suggest that DNA damage

can trigger changes in the splicing pattern of cellular genes by

modifying the ratio between cytoplasmic and nuclear SRPK2.

Discussion

In this report we investigated the molecular mechanism

underlying the changes in alternative splicing that are induced

by PQ treatment of SH-SY5Y neuroblastoma cells. We show that

PQ leads to the phosphorylation and the accumulation of SRPK2

in the cell nucleus, and to increased phosphorylation of SR

proteins. Relocalization of SRPK2 correlates with changes in the

alternative splicing pattern of the E1A splicing reporter and of

endogenous transcripts.

The molecular mechanisms that allow various stress stimuli to

be transmitted to the nucleus are still only partially understood.

Most research has concentrated on the elucidation of signal

transduction pathways that target transcription factors. A few

reports have however indicated that alternative pre-mRNA

splicing is also a target of stress signaling. Osmotic stress was

shown to induce the relocalization of hnRNPA/B the cytoplasm,

resulting in changes in the alternative splicing pattern of an

adenovirus E1A pre-mRNA splicing reporter [12]. Osmotic stress

also promotes nuclear accumulation of SRPK1, the ubiquitously

expressed paralogue of SRPK2 [15].

We demonstrate here that a phosphomimetic substitution of a

serine residue located in the C-terminal kinase domain is necessary

and sufficient to promote the accumulation of SRPK2 in the

nucleus in the absence of PQ. In contrast, substitution of this

serine with a non-phosphorylatable alanine residue prevents PQ-

induced translocation. Interestingly, we found that caffeine and

roscovitine prevent nuclear accumulation of SRPK2 upon PQ

treatment. Moreover, we observed the formation of cH2AX foci

in PQ-treated cells. The kinetics of foci appearance closely

correlated with the nuclear accumulation of SRPK2, suggesting

that SRPK2 relocalization may be due to the activation of the

DDR. Consistent with this idea, we found that cisplatin treatment

and c irradiation also induced an increase in nuclear SRPK2.

The biological function of SR proteins is regulated by cycles of

reversible phosphorylation [33]. Not surprisingly, phosphorylation

of SR protein is under the tight control of specific protein kinases

and phosphatases [34]. Increased amounts of SRPK2 in the

nucleus may alter the balance between SR protein kinases and

phosphatases leading to the hyperphosphorylation of SR proteins,

which in turn modulates splice site selection (Figure 7). Consistent

with this idea, we observed increased phosphorylation of most SR

proteins and a shift in splice site selection of the E1A minigene

reporter towards the 9 S mRNA variant. Similar effects on

SRPK1 localization and E1A splicing are induced by osmotic

stress [15]. Therefore, the redistribution of SRPKs may represent

a more general mechanism by which cells transduce stress signals

to change alternative splicing of key genes in cell fate determina-

tion.

Material and methods. C. Representative confocal micrographs of SH-SY5Y cells transfected with a construct expressing HA-tagged SRPK2, HA-
SRPK2(S581A), or HA-SRPK2(S581D). Upper row: DAPI; middle row: cells stained with an HA-specific antibody; lower row: merge of the DAPI and
antibody signals. D. The nuclear to cytoplasmic ratio (N/C) of the fluorescence signal was determined for 50 transfected cells. The graph shows the
average N/C ratio of SRPK2 signal measured as described in Materials and Methods. E. *** indicates p,0.0001 of groups compared by one-way
ANOVA and Tukey post-test analysis. F. Sequence alignment of the 577–586 aa region in SRPK2 highlighting conservation of CK2 consensus sites
across species. A black, vertical bar indicates the conserved serine.
doi:10.1371/journal.pone.0061980.g003

Paraquat-Induced SRPK2 Relocalization
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Figure 4. PQ treatment or nuclear SRPK2 affect splice site selection of the E1A minigene transcript. A. Schematic diagram illustrating the
structure of the construct and the splicing pattern of the E1A minigene reporter. Arrows mark the position of the primers used for PCR analysis. The
alternative 59 splice site and splicing events that generate the different mRNA variants are indicated. B. Representative agarose gel of the splicing
assay. SH-SY5Y cells were transiently transfected with the E1A reporter plasmid. 24 h after transfection cells were treated PQ. Total RNA was then
isolated and the alternative splicing pattern of the E1A transcripts was determined by RT-PCR. The treatment with PQ induced an increase of the
production of the 9 S transcript variant with respect to the other isoforms. C. Densitometric analysis of the E1A splicing products (mean 6 S.E., n = 3)
in cells treated with vehicle or with PQ. *** indicates p,0.001, and * indicates D. p,0.05, compared with control by paired, two-tailed Student’s t test.
E. Western blot analysis of the expression level of HA-tagged wild type and the S581D mutant in untreated and in PQ-treated SH-SY5Y cells. Blots
were probed with an anti-HA antibody. Actin was used as loading control. F. SH-SY5Y cells were transiently transfected with the E1A splicing reporter
minigene alone or together with expression plasmids coding for HA-tagged wild type SRPK2 or with the S581D mutant. RNA and protein fractions
were simultaneously prepared. The alternative splicing pattern of the E1A transcripts was determined by RT-PCR. G. Densitometric analysis of the
splicing products (mean 6 S.E., n = 3) in untreated and PQ-treated cells. The relative levels of 13 S, 12 S, and 9 S mRNAs were quantitated as
described in Materials and Methods. *** indicates p,0.001, * * indicates p,0.01, by one-way ANOVA and Dunnett’s post test.
doi:10.1371/journal.pone.0061980.g004

Paraquat-Induced SRPK2 Relocalization
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Figure 5. Genotoxic stress induces nuclear accumulation and phosphorylation of SRPK2. A. PQ induces DNA damage. Representative
confocal micrographs of SH-SY5Y cells treated with PQ and fixed at the indicated time-points. Cells were stained with an anti-cH2AX antibody (upper
row) or with an antibody specific for SRPK2 (lower row). B. Inhibition of PQ-induced H2AX phosphorylation by roscovitine. Representative confocal
micrographs of SH-SY5Y cells incubated with 10 mM roscovitine and PQ treatment. ãH2AX was detected by immunocytochemistry; nuclei were
stained with DAPI. C. Inhibition of the DDR blocks nuclear localization of SRPK2. Representative confocal micrographs of control SH-SY5Y cells (first
row), or SH-SY5Y cells incubated with PQ alone (second row), or with PQ and with 10 mM roscovitine (third row), or with PQ and 10 mM caffeine (forth
row). SRPK2 was detected by immunocytochemistry; nuclei were stained with DAPI. D. Genotoxic treatments induce nuclear localization of SRPK2.
Representative confocal micrographs of untreated SH-SY5Y cells (upper row) or cells treated with 20 mM cisplatin for 18 h (middle row) or irradiated
with 10 Gy (lower row) were stained with DAPI and with an anti-SRPK2 antibody. E. Genotoxic treatments induce hyperphosphorylation of SRPK2.
Western blots of total cell extract prepared from untreated SH-SY5Y cells or from cells treated with PQ, or with cisplatin for the indicated times. The
blot was probed with an anti-SRPK2 antibody. Actin was used as loading control. The slower migrating band is indicated by an arrow.
doi:10.1371/journal.pone.0061980.g005

Paraquat-Induced SRPK2 Relocalization
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Materials and Methods

Constructs
pME-HAmSRPK2 [45] was used as a template to derive all the

SRPK2 mutants. The spacer-deleted mutant was obtained by

double digestion of pME-HAmSRPK2 with BamHI and HindIII

followed by fill-in and ligation of the vector. The N-terminus

deleted was obtained by a first amplification with the oligonucle-

otides Nterm-FW (59- GTCGACGCGGCCGCGGA-

GATTCTGGGGTCAGATG -39) and HindIII-REV (59-

CGGAAGCTTCTGCAGAGGT -39)), and then subcloning in

pME-HAmSRPK2 digested with HindIII/SalI. All other mutants

were obtained thorough site directed mutagenesis (for the

complete list of oligonucleotide sequences used in the mutagenesis

see supplementary table S2). The plasmid p-hSRPK2-FLAG was

obtained by inserting a FLAG tag in pCMV6-XL5-hSRPK2

(SC107542, OriGene). PCR was performed using the oligonucle-

otides hSRPK2-fw (59-TATGTCAGTTAACTCTGAGAAG-

TCGT-39) and hSRPK2-rev (59-ACTACTTATCGTCGT-

CATCCTTGTAATCAATGTTAACAGAATTCAACCAAG-

GAT-39), and the Phusion Hot Start High-Fidelity DNA

Polymerase (F-540 S, Finnzymes). The PCR product was cleaved

with NotI and inserted in pCDNA3. All the constructs were

verified by nucleotide sequencing.

To generate silencing constructs for SRPK1 and SRPK2,

sequences coding for short hairpin RNAs (shRNAs) were inserted

as double-stranded oligonucleotides into pSUPuro between the

BglII and HindIII sites as described [35,36]. In each construct, the

sense and antisense sequences of the target sequence (SRPK1: 59-

GGACAAAGCCCAAAGGAAA-39; SRPK2: 59- GCGA-

GAAGCTGAAAGGAAA-39) are separated by a 9 nt spacer

(TTCAAGAGA) that allows the formation of a hairpin loop.

These vectors are referred to as pSUPuro-SRPK1 and pSUPuro-

SRPK2. To generate the pLV-TH SRPK1 and SRPK2 plasmids,

the pSUPuro plasmids were digested with BstXI and SalI and the

H1-shRNA cassette was inserted into the same sites of pLV-TH

[37].

Cell culture and drug treatments
Human neuroblastoma SH-SY5Y were cultured in D-MEM/F-

12 medium with GlutaMAXTM (Gibco, Invitrogen, UK), 10%

FBS, 100 Units/mL penicillin G, 100 mg/ml streptomycin/

penicillin (Euroclone, Milano, Italy). After having reached

confluence, cells were reseeded at 36106cells in 100 mm dish.

Paraquat (N,N9-dimethyl-4,49-bipyridinium dichloride, Sigma-

Aldrich) treatment was carried out essentially as described in

(Maracchioni, et al., 2007) but for 18 h at 0.75 mM concentration.

Treatment with cisplatin (Sigma-Aldrich) was performed for 18 h

at 20 mM concentration. Roscovitine was used at a concentration

of 10 mM and caffeine at 10 mM.

Transfections for RNA extraction or immunoblotting were

performed with polyethylenimine (PEI, 40,872-7, Sigma, 100 mM

in H20 pH 7.00) according to the manufacturer’s instruction. The

transfected cells were incubated for further 24 or 48 h before lysis.

For immunofluorescence analysis, cells were seeded in a 6-well

plate containing a coverslip in each well. The next day 3 mg

plasmid DNA was transfected using Transfast (Promega).

RNA interference
LV-ttR Krab-dsRed-transduced SH-SY5Y cells were incubated

with recombinant lentiviruses containing the shRNA expression

cassettes for SRPK1 and SRPK2 [37]. To allow fluorescence-

activated cell sorting of dsRed/GFP double positive cells,

doxycyclin was added to the growth medium 48 h before sorting.

Cell sorting positive cells was performed on a FACS ARIA

apparatus (Becton Dickinson, Franklin Lakes, NJ, USA). To

generate the inducible SRPK1/2 double knockdown cell line, the

sorted SH-SY5Y SRPK2 shRNA cell line was retransduced with

LV-TH SRPK1 shRNA viral supernatant. To induce silencing of

SRPKs cells were incubated for five days with 5 mg/ml doxycyclin.

Immunofluorescence and confocal microscopy analysis
Cells grown on the glass coverslips were fixed with 4%

paraformaldehyde in PBS for 10 min and permeabilized with

CKS solution (Hepes 20 mM, sucrose 300 mM, NaCl 50 mM,

MgCl2 3 mM, Triton 0,2%) cold for 5 min. After blocking with

FBS 10% in PBS with 0,05% Tween for 30 min, coverslips were

incubated for 1 h in a humid chamber with the following primary

antibodies in PBS containing 0,2% BSA: goat polyclonal anti-

SRPK2 (P-19, sc-11308, Santa Cruz Biotechnologies), mouse

monoclonal anti-SRPK2 (611118, BD Biosciences), mouse mono-

clonal anti-HA (Clone 6E2, 2367, Cell Signaling Technology),

rabbit polyclonal anti-HA (Y-11, sc-805, Santa Cruz Biotechnol-

Table 1. Differentially expressed genes involved in DNA damage response.

Accession Number Gene Symbol Description
Log2Fold
expression P.Value

NM_032043 BRIP1 BRCA1 interacting protein C-terminal helicase 1 21.00 3,5361023

NM_005194 CEBPB CCAAT/enhancer binding protein (C/EBP), beta 1.80 4,4761028

NM_001806 CEBPG CCAAT/enhancer binding protein (C/EBP), gamma 1.03 5,8561029

NM_022111 CLSPN claspin homolog (Xenopus laevis) 21.14 1,5561023

NM_000107 DDB2 damage-specific DNA binding protein 2, 48 kDa 1.24 2,0961029

NM_004083 DDIT3 DNA-damage-inducible transcript 3 3.46 8,4761028

NM_019058 DDIT4 DNA-damage-inducible transcript 4 2.51 3,4661027

NM_001031716 OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1.19 1,1461024

NM_006502 POLH polymerase (DNA directed), eta 1.45 1,0261029

NM_018137 PRMT6 protein arginine methyltransferase 6 21.14 5,5961029

NM_004219 PTTG1 pituitary tumor-transforming 1 21.03 1,196103

NM_031271 TEX15 testis expressed 15 21.59 1,156103

doi:10.1371/journal.pone.0061980.t001
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ogies), or mouse monoclonal anti-SC35 (S4045, Ascites Fluid,

Sigma). After washing three times with PBS plus 0.2% BSA, the

coverslips were stained with the respective fluor-conjugated

secondary antibody in PBS and 0.2% BSA. The secondary

antibodies were: Alexa 488-conjugated donkey anti-goat (A11055,

Molecular Probes), Alexa 488-conjugated goat anti-mouse

(A11001, Molecular Probes), Alexa 488-conjugated goat anti-

rabbit IgG (A-11070, Molecular Probes), and Alexa 546-conju-

gated donkey anti-mouse (A10036, Molecular Probes). After dark

incubation for 1 h, coverslips were washed three times with PBS

plus 0.2% BSA, incubated in a solution containing 4,6-diamidino-

2-phenylindole (DAPI, D9542, Sigma) 1 mg/mL in PBS for

10 min at RT, and mounted with FluorSave Reagent (345789,

20 mL, Calbiochem). The fluorescence 8-bit images were

collected with a Leica TCS SP2 AOBS confocal microscope with

the 636 oil immersion objective. Quantification of the data was

done using LSC software: 12-bit images were acquired by using

the same setting parameters for all the samples (gain, offset); for

each field, five different xy sections along the z axis were acquired.

Measurements were obtained for the nuclear fluorescence (Sn), the

total cell fluorescence (Sc), the area of the nucleus (An), and area of

the cell (Ac). The cytoplasmic (C9) amount of signal was calculated

as: C9 = 1 - [(An Sn)/(Ac Sc)]. C/N ratios were calculated as C/

N = C9/(1–C9).

Figure 6. Genotoxic stress modifies alternative splicing of endogenous genes. A. SH-SY5Y cells were incubated with vehicle or with PQ as
described in Material and Methods. The bar graph represents the quantification of the RT-PCR splicing analysis of the alternatively spliced regions of
the APAF1 (exon 18, e18), H-RAS (exon 5, e 5), ERCC1 (exon 8, e 8), SKP2 (exon 11, e 11), and BIN1 (exon 14, e14) transcripts. The indicated splice forms
were subcloned and sequenced to verify their identity. The inclusion or the skipping of variable exons after PQ treatment (black bars) was normalized
relative to that observed in the respective controls (light grey bars). Error bars indicate the standard error three biological replicates. The asterisks
represents the result of two-tailed t-test: *** indicates p,0.001, ** indicates p,0.01. B. RT-PCR splicing analysis of the alternatively spliced exon 18
(e18) of the APAF1 transcript in SH-SY5Y cells treated with vehicle (control), PQ, or c-radiation. The asterisks represents the result of one-way ANOVA
and Tukey’s post test: * indicates p,0.05. C. RT-PCR splicing analysis of the alternatively spliced exon 5 (e5) of the H-RAS transcript in SH-SY5Y cells
treated with vehicle, PQ, or cisplatin as described in Material and Methods. The asterisks represents the result of one-way ANOVA and Dunnett’s post
test: *** indicates p,0.001, ** indicates p,0.01.
doi:10.1371/journal.pone.0061980.g006
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Western blot analysis
Cells were lysed in lysis buffer (Tris HCl 50 mM pH 6.80, NaCl

150 mM, 1% NP40, 5 mM EGTA, 5 mM EDTA) with protease

inhibitors (Complete PIC, 04 693 116 001, Roche) and

phosphatase inhibitors (PhIC-1, P2850, Sigma; PhIC-2 P5726,

Sigma). Phosphatase treatment of total protein lysates was

performed with calf intestinal alkaline phosphatase was used

(CIP, New England Biolabs) following manufacturer’s instructions.

Proteins were separated in SDS-polyacrylamide gels and

transferred to nitrocellulose membranes (Whatman GmbH).

Membranes were blocked using 5% non fat dried milk in PBST

(0.1% (v/v) Tween 20 in 16 PBS) for 1 h at room temperature

and incubated with a primary antibody. The following primary

antibodies were used: mouse monoclonal anti-CPSF73K [38],

mouse monoclonal antibody mab 104 [16] mouse monoclonal

anti-SR proteins (clone 16H3, Invitrogen), mouse monoclonal

anti-SRp20 (clone 7B4, Invitrogen), mouse monoclonal anti-ASF/

SF2 (clone 96, Invitrogen), mouse monoclonal anti-ß actin

(ab8226, Abcam), mouse monoclonal anti-SRPK2 (BD Bioscienc-

es), mouse monoclonal anti-hnRNP K/J (clone 3C3, Sigma),

mouse monoclonal anti-hnRNP A1 (clone 4B10, Abcam), rabbit

polyclonal anti-hnRNP H (Novus Biological), mouse monoclonal

anti-hRNP C1/C2 (clone 4F4, Sigma), goat polyclonal anti-LDH

(Chemicon International), mouse monoclonal anti-FLAG-M2

(Sigma) mouse monoclonal anti-HA (Clone 6E2, Cell Signaling

Technology). After washing membranes were incubated with

peroxidase-conjugated secondary antibody anti-mouse IgG (GE

Healthcare), anti-goat IgG (Pierce), anti-rabbit IgG (Pierce,), anti-

mouse IgM (Santa Cruz Biotechnologies) and then detected with

ECL reagents (GE Healthcare).

RNA extraction and RT-PCR analysis of alternative
splicing

All the splicing analyses were performed on three independent

RNA preparations. Total RNA was from cultured cells extracted

using TRIzolH Reagent (Invitrogen), and subsequently purified

using silica membrane spin columns from RNeasy Mini kit

(Qiagen). RNA quantity and purity were assessed using a

NanoDropH instrument (Thermo Fisher Scientific Inc.). 2 mg of

total RNA were reverse-transcribed using MultiScriveTM Reverse

Transcriptase (Applied Biosystems), random hexamers (Applied

Biosystems), RNAsin Plus reagent (Promega) and dNTPs for 2 h at

37uC according to manufacture’s instruction. PCR assay condi-

tions were optimized for each gene with respect to primer

annealing temperatures, primer concentration, and MgCl2

concentrations. The number of amplification cycles used for each

reaction was determined to ensure that transcript amplification

was within a linear range (25 to 35 cycles). Gene specific primer

sequences are listed in Supporting Information, Table S1.

Quantification of the PCR products was performed with a 2100

Bioanalyzer (Agilent Technologies). Statistical analysis was per-

formed using GraphPad Instat software (GraphPad Software Inc.).

The amplified PCR products were cloned in pGEM T Easy

Vector System (Promega, Madison, USA) and sequenced by BMR

Genomics.

E1A splicing reporter assays
SH-SY5Y cells were either transfected with 5 mg of the reporter

construct alone or cotransfected with 5 mg of pME-HA-SRPK2

constructs as described above. Bluescript vector was used to

equalize the amount of total DNA transfected into the cell. Total

RNA was extracted using Trizol (Invitrogen) and passed into

RNeasy Mini Kit columns (Qiagen). After DNase treatment

(Promega), cDNA was synthesized from 1 mg of total RNA in a

20 ml reaction with oligo-dT primer (Promega) and M-MLV

Reverse Transcriptase (Promega). One ml was then used for PCR

amplification with GoTaq Flexi DNA Polymerase (Promega) using

the following E1A primers (59-TGAGTGCCAGCGAGTA-

GAGTTTTCT-39) and (59-TCTGGCTCGGGCTCAGGCT-

CAGGTT-39). Quantification of the PCR products was per-

formed with a 2100 Bioanalyzer (Agilent Technologies). Statistical

analysis was performed using GraphPad Instat software (Graph-

Pad Software Inc.).

Figure 7. Model of SRPK2 action inthe modulation of stress-dependent splicing. A. Under normal conditions SRPK2 is mainly located in the
cytoplasm. Its low level in the nucleus is counteracted by phosphatases that keep SR proteins in a hypophosphorylated state. B. Upon activation of
stress-dependent signalling (f. ex. induced by DNA damage) SRPK2 is phosphorlyated in serine 581 and translocates to the nucleus. Here, the
increased SRPK2 concentration overrides dephosphorlyation by PPases and leads to hyperphosphorylation of SR proteins. Since hyperpho-
sphorylation of the RS domain is detrimental for splicing activity, this results in the reduction of the active pool of SR proteins and to a change in the
balance between SR proteins and hnRNP proteins thus modifying the choice of alternative splice sites.
doi:10.1371/journal.pone.0061980.g007
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Statistical analysis
Continuous variables are expressed as means 6 SEM. The

averages and SEMs were calculated from at least three indepen-

dent experiments. Means of two-groups experiments were

compared with t-test (unpaired or paired, according to the fact

that data were respectively coupled or not). Means of multiple-

groups experiments were compared using one-way ANOVA,

Tukey post-test analysis, or Dunnett’s post hoc test. All the

analyses were performed using GraphPad prism 5.0 and

GraphPad Instat 3. A P value of *P,0.05 was considered

statistically significant, **P,0.01 was considered very significant,

***P,0.001 was considered extremely significant.

Supporting Information

Figure S1 Quantitative analysis of nuclear speckles in
PQ-treated cells. A. SH-SY5Y cells treated with vehicle or with

PQ were immunostained with an antiSC35 monoclonal antibody.

B. Anti-SC35 immunostained nuclear speckles in control SH-

SY5Y cells (white bars) and in cells treated with PQ (black bars).

While PQ affects neither the number nor the intensity of SC35-

positive nuclear speckles, their size becomes significantly larger

upon treatment. Quantification of the confocal micrographs was

performed with the LSC Data Analysis Software on n = 5

representative cells. Samples measurements were obtained for

the total area for each single speckle in each cell (pixel number in

the considered region of interest ROI), mean amplitude of the

pixel intensity for each single speckle in each cell (pixel intensity in

the ROI), total number of speckles per each cell. Values shown are

the mean 6 SEM obtained from 17.663.3 nuclear speckles in five

control cells and 14.0 6 3.5 nuclear speckles in five PQ-treated

cells respectively.

(TIFF)

Figure S2 PQ treatment does not modify the expression
level of hnRNP proteins. Total extract of control or PQ-

treated cells was probed with monoclonal antibodies to specific for

hnRNP A1, hnRNP C1/C2, hnRNP K/J, or hnRNP H.

(TIFF)

Figure S3 Intracellular distribution of SRPK2 mutant
proteins. A. Schematic diagram of the domain structure of wild

type SRPK2 and of its mutant variants. B. Representative confocal

micrographs of SH-SY5Y cell transfected with constructs

expressing the indicated HA-tagged SRPK2 proteins.

(TIF)

Table S1 Nucleotide sequences of the primers used for
alternative splicing analysis.

(DOC)

Table S2 Oligonucleotides used to generate the SRPK2
mutants.

(DOC)
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